Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-(4-Methylphenyl)iminomethyl]-6-(morpholin-4-ylmethyl)phenol

Mehmet Akkurt,^a* Sevim Türktekin,^a Aliasghar Jarrahpour,^b Hashem Sharghi,^b Seid Ali Torabi Badrabady,^b Mahdi Aberi^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 8 December 2010; accepted 13 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.121; data-to-parameter ratio = 16.6.

In the title compound, $C_{19}H_{22}N_2O_2$, the morpholine ring adopts an almost perfect normal chair conformation with puckering parameters $Q_{\rm T}$, θ and φ of 0.5642 (18) Å, 177.32 (17) and $\varphi = 10 (4)^{\circ}$, respectively. The two benzene rings make a dihedral angle of $42.67 (8)^{\circ}$ with each other. An intramolecular O-H···N hydrogen bond helps to stabilize the molecular conformation. Aromatic $C-H\cdots\pi$ interactions and $\pi - \pi$ stacking interactions [centroid–centroid distance = 3.6155 (15) Å] between the benzene rings contribute to the stabilization of the crystal structure.

Related literature

For general background to Schiff bases with an azomethine or imine group (-C=N-), see: Akkurt *et al.* (2008); Dhar & Taploo (1982); Emregül et al. (2006); Jarrahpour & Khalili (2006); Jarrahpour et al. (2007); Mladenova et al. (2002); Przybylski et al. (2009); Sessler et al. (2006); Singh et al. (2006). For a similar structure, see: Akkurt et al. (2008). For reference structural data, see: Allen et al. (1987). For conformational analysis, see: Cremer & Pople (1975).

Experimental

. .

Crystal data	
$\begin{aligned} C_{19}H_{22}N_2O_2\\ M_r &= 310.39\\ \text{Triclinic, } P\overline{1}\\ a &= 9.807 (3) \text{ Å}\\ b &= 10.091 (3) \text{ Å}\\ c &= 10.528 (3) \text{ Å}\\ \alpha &= 99.78 (2)^{\circ}\\ \beta &= 109.34 (2)^{\circ} \end{aligned}$	$\gamma = 115.18 \ (2)^{\circ}$ $V = 828.7 \ (5) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.53 \times 0.40 \times 0.23 \text{ mm}$
Data collection	
Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.958$, $T_{max} = 0.982$	15421 measured reflections 3443 independent reflections 2894 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$
Refinement	
$R[F^{2} > 2\sigma(F^{2})] = 0.042$ wR(F^{2}) = 0.121 S = 1.08	208 parameters H-atom parameters constrained $\Delta a = 0.19 \text{ e} \text{ Å}^{-3}$

max $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1

3443 reflections

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O1 - H1 \cdots N1 \\ C19 - H19A \cdots Cg2^{i} \end{array}$	0.82 0.97	1.90 2.96	2.6261 (18) 3.732 (3)	147 137

Symmetry code: (i) x - 1, y - 1, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ, HS, SATB and MA thank the Shiraz University Research Council for financial support (grant No. 89-GR-SC-23).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2317).

References

- Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.
- Emregül, K. C., Düzgün, E. & Atakol, O. (2006). Corros. Sci. 48, 3243-3260.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Jarrahpour, A. & Khalili, D. (2006). Molecules, 11, 59-63.

- Jarrahpour, A., Khalili, D., Clercq, E. D., Salmi, C. & Brunel, J. M. (2007). *Molecules*, **12**, 1720–1730.
- Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). *Eur. Polym. J.* **38**, 989–999.
- Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.

Sessler, J. L., Melfi, P. J. & Dan Pantos, G. (2006). Coord. Chem. Rev. 250, 816– 843.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2011). E67, o147-o148 [doi:10.1107/S1600536810052311]

2-[(E)-(4-Methylphenyl)iminomethyl]-6-(morpholin-4-ylmethyl)phenol

M. Akkurt, S. Türktekin, A. Jarrahpour, H. Sharghi, S. A. T. Badrabady, M. Aberi and O. Büyükgüngör

Comment

Schiff bases, named for Hugo Schiff with the azomethine or imine group (-C=N-) usually synthesized by condensation of a primary amine and an active carbonyl group under specific conditions. These compounds show a broad range of applications such as corrosion inhibitors (Emregül *et al.*, 2006), catalysts (Sessler *et al.*, 2006), pigments and polymer stabilizers. Schiff bases possess high biological activities including antibacterial (Jarrahpour *et al.*, 2006), antifungal (Singh *et al.*, 2006), antitumor (Mladenova *et al.*, 2002), antimalarial (Przybylski *et al.*, 2009), antiviral (Jarrahpour *et al.*, 2007) and antipyretic properties (Dhar *et al.*, 1982). Schiff bases are also good intermediates for the synthesis of other chemical substances such as 2-azetidinones.

As shown in Fig. 1, the morpholine ring (N2/O2/C16–C19) of the title compound (I) adopts a chair conformation with puckering parameters Q_T , θ and ϕ of 0.5642 (18) Å, 177.32 (17) ° and $\phi = 10$ (4) ° (Cremer & Pople (1975). The dihedral angle between the (C1–C6) and (C9–C14) benzene rings in (I) is 42.67 (8)°. The bond lengths exhibit normal values (Allen *et al.* 1987) and are comparable with those in our similar structure previously published (Akkurt *et al.*, 2008).

The molecular conformation of (I) is stabilized by intramolecular weak C12—H12···N2 and strong O1—H1···N1 hydrogen bonds (Table 1). In the crystal structure, a C—H··· π interaction (Table 1) and a π - π stacking interaction between the C9–C14 benzene rings contribute to the stabilization of the crystal packing [*Cg*3···*Cg*3ⁱⁱ(symmetry code ii = 1 - *x*, 1 - *y*, -*z*) = 3.6155 (15) Å, where *Cg*3 is a centroid of the C9–C14 benzene ring]. Fig. 2 shows the crystal packing of (I) down the *a* axis.

Experimental

Reaction of 2-hydroxy-3-(morpholinomethyl)benzaldehyde with 4-methylaniline in refluxing ethanol gave Schiff base (I) that recrystallized from ethanol to give orange crystals in 85% yield. [mp: 377–379 K]. IR (KBr, cm⁻¹): 1615.2 (C=N), 3170.6–3310.5 (OH). ¹H-NMR (250 MHz, CDCl₃) δ (p.p.m): 2.30 (Me, s, 3H), 2.51 (CH₂, t, 4H, *J* = 4.5), 3.60 (CH₂, s, 2H), 3.69 (CH₂, t, 4H, *J* = 4.5), 6.81–7.38 (m, ArH, 7H), 8.56 (HC=N, s, 1H), 13.68 (OH, s, 1H). ¹³C-NMR (CDCl₃) δ (p.p.m): 21.0 (Me), 53.5 (N—CH₂), 56.4 (CH₂), 66.8 (O—CH₂), 118.5–159.7 (C=C aromatic carbons), 161.3 (C=N).

Refinement

All H atoms were placed at calculated positions and were treated as riding on their parent atoms with O—H = 0.82 Å, C—H = 0.93 (aromatic), 0.96(methyl) and 0.97 Å (methylene), and with $U_{iso}(H) = 1.5U_{eq}(O,C)$ for hydroxy and methyl and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, methylene. Figures

Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. View of the packing of (I) down the *a* axis. All H atoms are omitted for clarity.

2-[(E)-(4-Methylphenyl)iminomethyl]-6-(morpholin-4-ylmethyl)phenol

Crystal data	
$C_{19}H_{22}N_2O_2$	Z = 2
$M_r = 310.39$	F(000) = 332
Triclinic, <i>P</i> T	$D_{\rm x} = 1.244 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.807 (3) Å	Cell parameters from 2924 reflections
b = 10.091 (3) Å	$\theta = 2.2 - 28.0^{\circ}$
c = 10.528 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 99.78 \ (2)^{\circ}$	T = 296 K
$\beta = 109.34 \ (2)^{\circ}$	Prism, yellow
$\gamma = 115.18 \ (2)^{\circ}$	$0.53\times0.40\times0.23~mm$
$V = 828.7 (5) \text{ Å}^3$	

Data collection

Stoe IPDS 2 diffractometer	3443 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	2894 reflections with $I > 2\sigma(I)$
plane graphite	$R_{\rm int} = 0.026$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	$k = -12 \rightarrow 12$
$T_{\min} = 0.958, \ T_{\max} = 0.982$	$l = -13 \rightarrow 13$
15421 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.1054P]$ where $P = (F_o^2 + 2F_c^2)/3$
3443 reflections	$(\Delta/\sigma)_{max} < 0.001$
208 parameters	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.68415 (12)	0.65889 (11)	0.31759 (10)	0.0605 (3)
O2	0.25927 (15)	-0.05310 (13)	0.37129 (14)	0.0731 (4)
N1	0.70908 (14)	0.89705 (12)	0.23661 (12)	0.0509 (3)
N2	0.39377 (13)	0.18806 (12)	0.26385 (12)	0.0470 (3)
C1	0.80432 (16)	1.05345 (14)	0.24513 (14)	0.0460 (4)
C2	0.90410 (18)	1.17249 (16)	0.38095 (15)	0.0529 (4)
C3	1.00285 (17)	1.32583 (15)	0.39579 (15)	0.0541 (4)
C4	1.00833 (16)	1.36570 (15)	0.27667 (15)	0.0508 (4)
C5	0.90948 (17)	1.24557 (15)	0.14201 (15)	0.0515 (4)
C6	0.80862 (16)	1.09138 (14)	0.12519 (14)	0.0492 (4)
C7	1.1219 (2)	1.53245 (17)	0.29286 (19)	0.0719 (5)
C8	0.56247 (17)	0.80217 (15)	0.13084 (15)	0.0496 (4)
C9	0.46275 (16)	0.63836 (14)	0.11187 (14)	0.0464 (4)
C10	0.52758 (16)	0.57282 (14)	0.20561 (13)	0.0461 (4)
C11	0.43183 (16)	0.41315 (14)	0.18260 (14)	0.0469 (4)
C12	0.27222 (17)	0.32268 (15)	0.06675 (15)	0.0503 (4)
C13	0.20689 (17)	0.38570 (16)	-0.02683 (15)	0.0538 (4)
C14	0.30183 (17)	0.54185 (16)	-0.00456 (15)	0.0529 (4)
C15	0.51246 (18)	0.34623 (16)	0.28015 (16)	0.0565 (4)
C16	0.48127 (18)	0.10773 (17)	0.31696 (16)	0.0555 (5)
C17	0.3568 (2)	-0.05472 (17)	0.29914 (17)	0.0625 (5)
C18	0.1757 (2)	0.0270 (2)	0.3227 (2)	0.0783 (7)
C19	0.2971 (2)	0.19116 (18)	0.34212 (18)	0.0620 (5)

Fractional atomic coordinates an	d isotronic or e	auivalent isotropic di	splacement	narameters i	(Å ²)
1 rachonal alonne coorainales an			spincemeni	pur uniciers (11	,

0.72840	0.74990	0.32090	0.0910*
0.90420	1.14840	0.46240	0.0630*
1.06710	1.40420	0.48720	0.0650*
0.91110	1.26940	0.06080	0.0620*
0.74370	1.01320	0.03360	0.0590*
1.23740	1.56600	0.35230	0.0860*
1.09230	1.60030	0.33720	0.0860*
1.10810	1.53690	0.19930	0.0860*
0.51770	0.83940	0.06320	0.0600*
0.20700	0.21690	0.05110	0.0600*
0.09940	0.32250	-0.10420	0.0650*
0.25840	0.58370	-0.06780	0.0630*
0.60110	0.34430	0.25960	0.0680*
0.56460	0.41530	0.37980	0.0680*
0.56130	0.16730	0.41820	0.0670*
0.54360	0.10120	0.26380	0.0670*
0.28230	-0.11600	0.19710	0.0750*
0.41730	-0.10540	0.33660	0.0750*
0.11260	0.03090	0.37590	0.0940*
0.09590	-0.03110	0.22120	0.0940*
0.23530	0.24150	0.30660	0.0740*
0.37330	0.25170	0.44400	0.0740*
	0.72840 0.90420 1.06710 0.91110 0.74370 1.23740 1.09230 1.10810 0.51770 0.20700 0.09940 0.25840 0.60110 0.56460 0.56130 0.54360 0.28230 0.41730 0.11260 0.09590 0.23530 0.37330	0.72840 0.74990 0.90420 1.14840 1.06710 1.40420 0.91110 1.26940 0.74370 1.01320 1.23740 1.56600 1.09230 1.60030 1.10810 1.53690 0.51770 0.83940 0.20700 0.21690 0.09940 0.32250 0.25840 0.58370 0.60110 0.34430 0.56460 0.16730 0.54360 0.10120 0.28230 -0.11600 0.41730 -0.10540 0.11260 0.03090 0.09590 -0.03110 0.23530 0.24150 0.37330 0.25170	0.728400.749900.320900.904201.148400.462401.067101.404200.487200.911101.269400.060800.743701.013200.033601.237401.566000.352301.092301.600300.337201.108101.536900.199300.517700.839400.063200.207000.216900.051100.099400.32250-0.104200.258400.58370-0.067800.601100.344300.259600.561300.167300.418200.543600.101200.263800.28230-0.116000.197100.41730-0.105400.336600.112600.030900.375900.09590-0.031100.221200.235300.241500.306600.373300.251700.44400

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0572 (6)	0.0439 (5)	0.0533 (5)	0.0144 (4)	0.0117 (4)	0.0177 (4)
O2	0.0841 (8)	0.0696 (7)	0.0967 (8)	0.0459 (6)	0.0539 (7)	0.0551 (6)
N1	0.0570 (7)	0.0382 (5)	0.0558 (6)	0.0216 (5)	0.0276 (5)	0.0173 (5)
N2	0.0482 (6)	0.0411 (5)	0.0550 (6)	0.0236 (5)	0.0240 (5)	0.0224 (5)
C1	0.0463 (6)	0.0371 (6)	0.0536 (7)	0.0211 (5)	0.0225 (5)	0.0160 (5)
C2	0.0569 (8)	0.0476 (7)	0.0503 (7)	0.0247 (6)	0.0234 (6)	0.0174 (6)
C3	0.0514 (7)	0.0434 (7)	0.0511 (7)	0.0203 (6)	0.0157 (6)	0.0082 (5)
C4	0.0447 (7)	0.0383 (6)	0.0602 (8)	0.0189 (5)	0.0184 (6)	0.0156 (5)
C5	0.0531 (7)	0.0445 (7)	0.0542 (7)	0.0225 (6)	0.0237 (6)	0.0207 (6)
C6	0.0499 (7)	0.0396 (6)	0.0486 (7)	0.0193 (5)	0.0192 (6)	0.0120 (5)
C7	0.0678 (10)	0.0419 (7)	0.0777 (10)	0.0143 (7)	0.0231 (8)	0.0184 (7)
C8	0.0541 (7)	0.0432 (7)	0.0566 (7)	0.0257 (6)	0.0280 (6)	0.0218 (6)
C9	0.0490 (7)	0.0404 (6)	0.0527 (7)	0.0218 (5)	0.0269 (6)	0.0188 (5)
C10	0.0473 (7)	0.0406 (6)	0.0444 (6)	0.0186 (5)	0.0206 (5)	0.0138 (5)
C11	0.0502 (7)	0.0410 (6)	0.0506 (7)	0.0216 (5)	0.0256 (6)	0.0190 (5)
C12	0.0487 (7)	0.0384 (6)	0.0585 (8)	0.0177 (5)	0.0249 (6)	0.0183 (5)
C13	0.0436 (7)	0.0474 (7)	0.0583 (8)	0.0180 (6)	0.0174 (6)	0.0196 (6)
C14	0.0504 (7)	0.0511 (7)	0.0605 (8)	0.0268 (6)	0.0246 (6)	0.0271 (6)
C15	0.0509 (7)	0.0475 (7)	0.0601 (8)	0.0194 (6)	0.0192 (6)	0.0240 (6)
C16	0.0567 (8)	0.0581 (8)	0.0620 (8)	0.0354 (7)	0.0271 (7)	0.0282 (6)
C17	0.0816 (10)	0.0525 (8)	0.0645 (9)	0.0414 (8)	0.0325 (8)	0.0284 (7)
C18	0.0730 (10)	0.0819 (11)	0.1191 (15)	0.0480 (9)	0.0605 (11)	0.0659 (11)

C19	0.0761 (10)	0.0610 (8)	0.0774 (10)	0.0451 (8)	0.0470 (8)	0.0364 (7)
Geometric para	meters (Å, °)					
01		1 3492 (18)	C16-		1	501 (2)
$0^{2}-C^{17}$		1.3492(10) 1 408(3)	C18-	-C19	1	500 (3)
02 - C18		1.419(3)	C2—	н2	0	9300
01—H1		0.8200	C3—	H3	0	9300
N1—C8		1.277 (2)	C5—	Н5	0.	.9300
N1—C1		1.4189 (19)	С6—	H6	0.	.9300
N2-C15		1.458 (2)	С7—	H7A	0.	.9600
N2-C16		1.461 (2)	C7—	H7B	0.	.9600
N2-C19		1.454 (3)	C7—	H7C	0.	.9600
C1—C2		1.391 (2)	C8—	H8	0.	.9300
C1—C6		1.3887 (19)	C12-	-H12	0.	.9300
C2—C3		1.378 (2)	C13-	-H13	0.	.9300
C3—C4		1.391 (2)	C14-	-H14	0.	.9300
C4—C7		1.511 (2)	C15-	-H15A	0.	9700
C4—C5		1.388 (2)	C15-	-H15B	0.	9700
C5—C6		1.383 (2)	C16–	-H16A	0.	9700
С8—С9		1.453 (2)	C16–	-H16B	0.	9700
C9—C10		1.407 (2)	C17–	-H17A	0.	9700
C9—C14		1.395 (2)	C17–	–H17B	0.	9700
C10—C11		1.402 (2)	C18–	-H18A	0.	9700
C11—C15		1.513 (2)	C18–	-H18B	0.	.9700
C11—C12		1.383 (2)	C19–	-H19A	0.	9700
C12—C13		1.388 (2)	C19–	-H19B	0.	.9700
C13—C14		1.373 (2)				
01…N1		2.6261 (18)	Н6…С	28	2.	.7300
O2…N2		2.852 (2)	H6…I	-18	2.	.3300
01…H15B		2.5400	H6…1	N2 ⁱⁱ	2.	9100
O1…H19B ⁱ		2.8300	H7C·	··H5	2.	3500
01…H15A		2.8200	Н8…С	26	2.	.6600
$O2 \cdots H2^i$		2.7700	H8…I	H6	2.	.3300
N1…O1		2.6261 (18)	H8…I	H14	2.	.4300
N2…O2		2.852 (2)	H12…	·N2	2.	.5300
N1…H1		1.9000	H12…	·C19	2.	.9800
N2…H12		2.5300	H12…	·H19A	2.	5700
N2…H6 ⁱⁱ		2.9100	Н13…	·H18B ^{vii}	2.	5000
C1…C18 ⁱⁱⁱ		3.596 (3)	H14…	·H8	2.	4300
C8…C12 ⁱⁱ		3.409 (3)	H14…	·C5 ^{vi}	2.	8800
C10…C14 ⁱⁱ		3.432 (3)	H15A	····01	2.	8200
C12···C8 ⁱⁱ		3.409 (3)	H15A	····H16B	2.	2800
C12…C19		3.368 (2)	H15B	S…O1	2.	5400
C14…C10 ⁱⁱ		3.432 (3)	H15B	9H16A	2.	5900
C18····C1 ^{iv}		3.596 (3)	H15B	9H19B	2.	.3000
C19…C12		3.368 (2)	H16A	····H15B	2.	.5900

C1…H16B ^v	2.8600	H16A…H19B	2.4100
C1…H18A ⁱⁱⁱ	3.0000	H16B…C1 ^{viii}	2.8600
C2…H18A ⁱⁱⁱ	2.9600	H16B…C2 ^{viii}	3.0300
C2···H16B ^v	3.0300	H16B…H15A	2.2800
C3···H19A ⁱⁱⁱ	3.1000	H17A…H18B	2.3900
C4…H19A ⁱⁱⁱ	2.9400	H17A…H5 ⁱⁱ	2.4600
C5…H14 ^{vi}	2.8800	H18A…C1 ^{iv}	3.0000
С6…Н8	2.6600	H18A····C2 ^{iv}	2.9600
C8…H1	2.4200	H18B…H17A	2.3900
С8…Н6	2.7300	H18B…H13 ^{vii}	2.5000
С11…Н19А	2.8300	$H19A \cdots C3^{iv}$	3.1000
С12…Н19А	2 8700	H19AC4 ^{iv}	2 9400
C19H12	2 9800	H19A···C11	2.9100
H1N1	1 9000	H19A···C12	2.8500
H1C8	2.4200	H19A…H12	2.5700
	2 7700	H19B…H15B	2 3000
H5H7C	2 3500	H19BH16A	2.3000
H5···H17A ⁱⁱ	2.4600	H19B····O1 ⁱ	2.8300
$C_{17} - O_{2} - C_{18}$	110.04 (14)	C5-C6-H6	120.00
C10-O1-H1	109.00	C4—C7—H7A	109.00
C1 - N1 - C8	120.07 (13)	C4—C7—H7B	109.00
C15—N2—C19	111.36 (13)	C4—C7—H7C	109.00
C16—N2—C19	108.24 (13)	Н7А—С7—Н7В	110.00
C15—N2—C16	111.27 (14)	Н7А—С7—Н7С	109.00
N1—C1—C6	122.95 (12)	Н7В—С7—Н7С	109.00
C2—C1—C6	118.83 (13)	N1—C8—H8	119.00
N1—C1—C2	118.13 (12)	С9—С8—Н8	119.00
C1—C2—C3	120.53 (13)	C11—C12—H12	119.00
C2—C3—C4	121.30 (13)	C13—C12—H12	119.00
C3—C4—C5	117.56 (14)	C12—C13—H13	120.00
C5—C4—C7	120.84 (14)	C14—C13—H13	120.00
C3—C4—C7	121.57 (13)	C9—C14—H14	120.00
C4—C5—C6	121.83 (13)	C13—C14—H14	120.00
C1—C6—C5	119.93 (13)	N2—C15—H15A	109.00
N1—C8—C9	122.64 (14)	N2—C15—H15B	109.00
C8—C9—C10	121.32 (13)	C11—C15—H15A	109.00
C8—C9—C14	119.69 (13)	C11—C15—H15B	109.00
C10-C9-C14	118.95 (13)	H15A—C15—H15B	108.00
O1—C10—C11	117.69 (13)	N2—C16—H16A	110.00
C9—C10—C11	120.53 (13)	N2—C16—H16B	110.00
O1—C10—C9	121.76 (13)	C17—C16—H16A	110.00
C10—C11—C12	118.40 (13)	C17—C16—H16B	110.00
C12—C11—C15	123.20 (13)	H16A—C16—H16B	108.00
C10—C11—C15	118.29 (13)	O2—C17—H17A	109.00
C11—C12—C13	121.68 (14)	O2—C17—H17B	109.00
C12-C13-C14	119.68 (15)	С16—С17—Н17А	109.00

C9—C14—C13	120.76 (14)	С16—С17—Н17В	109.00
N2-C15-C11	113.61 (14)	H17A—C17—H17B	108.00
N2-C16-C17	110.36 (15)	O2-C18-H18A	109.00
O2—C17—C16	112.22 (15)	O2-C18-H18B	109.00
O2—C18—C19	112.08 (17)	C19—C18—H18A	109.00
N2-C19-C18	110.12 (15)	C19—C18—H18B	109.00
C1—C2—H2	120.00	H18A—C18—H18B	108.00
С3—С2—Н2	120.00	N2-C19-H19A	110.00
С2—С3—Н3	119.00	N2-C19-H19B	110.00
С4—С3—Н3	119.00	C18—C19—H19A	110.00
С4—С5—Н5	119.00	C18—C19—H19B	110.00
С6—С5—Н5	119.00	H19A—C19—H19B	108.00
С1—С6—Н6	120.00		
C17—O2—C18—C19	-56.61 (19)	N1—C8—C9—C10	-3.8 (3)
C18—O2—C17—C16	56.19 (18)	N1-C8-C9-C14	178.64 (17)
C8—N1—C1—C6	-39.4 (3)	C10-C9-C14-C13	0.8 (3)
C8—N1—C1—C2	143.89 (18)	C14—C9—C10—C11	-0.2 (2)
C1—N1—C8—C9	176.53 (15)	C8—C9—C10—O1	0.5 (2)
C19—N2—C15—C11	-79.79 (16)	C14—C9—C10—O1	178.05 (15)
C15—N2—C16—C17	-180.00 (13)	C8—C9—C14—C13	178.35 (16)
C16—N2—C15—C11	159.35 (13)	C8—C9—C10—C11	-177.71 (15)
C15—N2—C19—C18	179.71 (14)	C9-C10-C11-C12	-0.6 (2)
C19—N2—C16—C17	57.33 (16)	O1-C10-C11-C15	-2.6 (2)
C16—N2—C19—C18	-57.68 (17)	O1-C10-C11-C12	-178.89 (15)
N1-C1-C6-C5	-177.41 (17)	C9—C10—C11—C15	175.65 (15)
N1-C1-C2-C3	178.14 (17)	C12-C11-C15-N2	-14.1 (2)
C2—C1—C6—C5	-0.7 (3)	C10-C11-C15-N2	169.80 (14)
C6—C1—C2—C3	1.3 (3)	C15-C11-C12-C13	-175.25 (16)
C1—C2—C3—C4	-1.2 (3)	C10-C11-C12-C13	0.8 (3)
C2—C3—C4—C5	0.6 (3)	C11—C12—C13—C14	-0.2 (3)
C2—C3—C4—C7	-177.38 (18)	C12-C13-C14-C9	-0.6 (3)
C3—C4—C5—C6	0.0 (3)	N2—C16—C17—O2	-57.79 (17)
C7—C4—C5—C6	177.97 (18)	O2—C18—C19—N2	58.52 (19)
C4—C5—C6—C1	0.1 (3)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*+1, *y*+1, *z*; (iv) *x*-1, *y*-1, *z*; (v) *x*, *y*+1, *z*; (vi) -*x*+1, -*y*+2, -*z*; (vii) -*x*, -*y*, -*z*; (viii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.82	1.90	2.6261 (18)	147
C12—H12…N2	0.93	2.53	2.876 (2)	102
C19—H19A…Cg2 ^{iv}	0.97	2.96	3.732 (3)	137
Symmetry codes: (iv) $x-1$, $y-1$, z .				

Fig. 1

Fig. 2

